

Small-x Physics in PHENIX Small-x Physics in PHENIX Small-x Physics in PHENIX the Physics in PHENIX

Terry Awes
Oak Ridge National Laboratory

Workshop on Early Physic with Heavy Ion Collisions @ LHC

Bari, Italy July 6-8,2011

Outline:

- Introduction
- Hadron-pair measurements in d+Au in PHENIX
- Results
 - Small-x: mid-forward correlations
 - Very(!) small-x: forward-forward correlations
- Discussion
- Summary

** PhD thesis work of Beau Meredith, U Illinois http://arxiv.org/abs/1105.5112

Nuclear Modification in d+Au

- The d+Au measurements at RHIC have served as the reference system to investigate Cold Nuclear Matter effects.
 - Observe little or no modification at mid-rapidity, but significant suppression with increasing rapidity (decreasing parton fraction x).

Explanations: Shadowing, initial energy loss, gluon saturation,... PHENIX J/ψ

Nuclear Shadowing

Proton Parton Distribution Functions PDFs (from fits to ep@HERA)

Ratio Nuclear nPDF to proton PDF*A

10 -2

10 ⁻¹

10 -3

Extract nPDFs by fit to data on nuclei: e.g. SLAC, NMC, EMC DIS+DY+RHIC(d+A)

Gluons dominate low-x region where shadowing is significant.

e.g. EPS09NLO nPDFs: Eskola , Paukkunen, Salgado, JHP04 (2009)065

F.D. Aaron et al, [H1 Collaboration] Eur. Phys. J. C 64, 561 (2009)

10

The Color Glass Condensate

- High density @ low-x leads to recombination of gluons, hence suppression.
- Characterized by Saturation scale Q_s

$$Q_S = Q_{0,S} \left(\frac{x_0}{x}\right)^{\lambda}$$

- Nuclear Amplification $xG_A = A^{1/3}xG_p$ (centrality dependence)
- Region of importance: low-x (forward rapidity)

Mechanism for

gluon saturation

$$Q_S \propto A^{1/3} / \chi^{\lambda}$$

See e.g., F. Gelis, E. Iancu, J. Jalilian-Marian, R. Venugopalan, arXiv:1002.0333

Parton kinematics in 2->2 process

$$x_{Au} = \frac{p_{T}}{\sqrt{s}} (e^{-y_{3}} + e^{-y_{4}}) \qquad y_{4}, p_{T}$$

$$x_{1} \longrightarrow x_{2}$$

$$y_{3}, p_{T}$$

Example: Require Parton 3 in Forward direction $3 < y_3 < 4$ gives variation of x_2 with y_4 of parton 4

Select y of parton 4:

Mid-rapidity $y_4 \sim 0$

Mid-Fwd: $x_2 \sim 10^{-2}$

Forward $y_4 \sim 3$:

Fwd-Fwd $x_2 \sim 10^{-3}$

Decrease x_2 with decreasing p_T

Singles vs. di-Hadrons

PHENIX Detector at RHIC

For this presentation:

d+Au at 200 GeV

- Central Arms $|\eta|$ <0.35:
 - π^0 's in EM Calorimeters
 - Hadrons (tracking)
- Muon Arms
 - π^0 's in Muon Piston Calorimeter
- Beam-Beam Counters

PHENIX Muon Piston Calorimeter

Small cylindrical holes in Muon Magnet Pistons, Radius 22.5 cm and Depth 43.1 cm

MPC Particle Identification

PH***ENIX** Preliminary

 $\sqrt{s} = 200 \text{ GeV p+p} \rightarrow \pi^0 + X$

PHENIX π⁰

■ Brahms π⁻ η = 3

▲ Brahms π η = 3.3

 $3.0 < \eta < 3.4$

- ID π^{0} up to E ~ 25 GeV with MPC 3.1< $|\eta|$ < 3.9
 - Limitations: tower separation and merging effects
 - Use π^0 s for 7 GeV < E < 22 GeV -> p_T max ~ 2 GeV/c
 - η 's to high p_T
- Single Clusters for E > 15 GeV
 - Dominated by π^0 (~ 80%) -> Access higher p_T
- Good agreement between PHENIX MPC π^0 and BRAHMS π^- at $\eta \sim 3.2$ for p+p at 200 GeV

π⁰ R_{dA}: Centrality, Rapidity Dependence

 \blacksquare R_{dAu} with π^0 in MPC

$$R_{dAu} \equiv \frac{1}{\langle N_{coll} \rangle} \frac{d^2 N^{d+Au} / dp_T d\eta}{d^2 N_{inel}^{p+p} / dp_T d\eta}$$

Suppression increases with:

- Increasing centrality
- Increasing rapidity
- Decreasing p_T
- I.e., with decreasing
 x_{Au} or increasing
 thickness.
- More detail with correlation studies.

di-Hadron (di_Jet) Δφ Correlations

- Measure $\Delta \phi$ of all particle pairs
 - **Trigger particle** (usually leading p_T)
 - **Associate particle** (lower p_T)
 - Near side Associate particles
 - Away side Associate particles

"Conditional Yield"

$$CY = \frac{N_{pair}}{N_{trig} \varepsilon_{assoc}} = \frac{1}{N_{trig}} \int \frac{dN^{assoc}}{d\Delta \phi} d\Delta \phi$$

Number of correlated particle pairs <u>per</u> trigger particle after corrections for efficiencies, PID background, and subtracting uncorrelated background.

Pair Nuclear Modification Factor: J_{dA}

We define the di-Hadron or "Pair Nuclear" Modification factor" J_{dA}

$$J_{dA} = \frac{1}{\left\langle N_{coll} \right\rangle} \frac{\sigma_{dA}^{pair} / \sigma_{dA}}{\sigma_{pp}^{pair} / \sigma_{pp}}$$

Completely analogous to the Hadron Singles "Nuclear Modification factor" R_{da}

$$R_{dA} = \frac{1}{\langle N_{coll} \rangle} \frac{\sigma_{dA}^{sgl} / \sigma_{dA}}{\sigma_{pp}^{sgl} / \sigma_{pp}}$$

One can show
$$J_{dA} = I_{dA}^{trig} \times R_{dA}^{trig}$$
 where $I_{dA} = \frac{CY_{dA}}{CY_{pp}}$

where
$$I_{dA} = \frac{CY_{dA}}{CY_{pp}}$$

For di-Hadron studies, I_{dA} has been used most frequently.

- Indicators of nuclear effects with pair measurements:
 - $J_{dA} < 1$, just as with $R_{dA} < 1$
 - Angular broadening of correlation width new feature

An Aside: The problem with I_{dA}

While the pair Yield, and J_{dA} , are independent of the trigger/associate particle label, the CY and I_{dA} do depend on the label.

$$I_{dA}^{fwd,trig} \neq I_{dA}^{mid,trig}$$

$$I_{dA}^{fwd} = J_{dA} / R_{dA}^{fwd}$$

$$I_{dA}^{fwd} = J_{dA} / R_{dA}^{mid}$$

$$I_{dA}^{fwd-rapidity trigger}$$

$$I_{dA}$$

Mid-Forward di-Jets with $\Delta \eta \sim 3.4$

For p+p: $x_2 \sim 10^{-2}$

(d+Au A^{1/3} effect)

d

Backward direction (South) ←

Mid-Forward Per-Trigger Correlations

- Mid-Forward π⁰-π⁰ Correlations; Mid-rapidity triggered
 - Central d+Au shows suppression
 - No broadening apparent

$$|\eta^{\text{mid}}| < 0.35, \, \eta^{\text{fwd}} = 3.0 - 3.8$$

$Mid-Fwd J_{dAu} vs N_{coll}, p_{T}^{mid}, p_{T}^{fwd}$

MPC π^0 p_T

- Mid-Fwd pair J_{dAu} with π^0 in MPC; Mid π^0 , $h^{+/-}$
- Suppression increases with:
 - Increasing N_{coll}
 - Decreasing p_T^{mid}
 - Decreasing p_T fwd
- I.e., with decreasing x_{Au} or increasing thickness, just like R_{dAu}
- Look at y-dependence

Forward-Forward di-Jets at $\eta \sim 3.2$

For p+p: $x_2 \sim 10^{-3}$ (d+Au A^{1/3} effect)

d

Backward direction (South) ←

Fwd-Fwd Per-Trigger Correlations

- Forward rapidity Cluster–π⁰ Correlations
 - Use Zero-Yield at Minimum to subtract BG
 - Central d+Au shows significant suppression
 - Possible angular broadening in central d+Au

$$\eta^{\text{clus},\pi 0} = 3.0-3.8$$

Fwd-Fwd J_{dAu} vs N_{coll} , p_T^{fwd1} , p_T^{fwd2}

MPC π^0 p_T

Fwd-Fwd pair J_{dAu} with π^0 and Cluster in MPC

- Suppression increases with:
 - Increasing N_{coll}
 - Decreasing p_T
 - Increasing y, i.e."going forward"
- I.e., with decreasing x_{Au} or increasing thickness, just like R_{dAu}
- So, what has been learned beyond R_{dAu}?

Systematize J_{dAu} Results

- The advantage of the pair measurement is that it constrains the kinematics.
- Estimate 2->2 parton kinematics ignoring fragmentation effects, i.e.

 - $p_T = p_{T1}/z_1 = p_{T2}/z_2$: Set z=1
- Calculate <x_{Au}> estimate as if hadrons=partons using bin averages:

$$x_{Au}^{frag} \equiv \frac{\langle p_{T1} \rangle e^{-\langle \eta_1 \rangle} + \langle p_{T2} \rangle e^{-\langle \eta_2 \rangle}}{\sqrt{s}}$$

$$x_{Au} = \frac{p_{T}}{\sqrt{s}} (e^{-y_{3}} + e^{-y_{4}}) \qquad y_{4}, p_{T}$$

$$x_{d} \qquad x_{Au}$$

$$y_{3}, p_{T}$$

- Plot J_{dAu} vs. x^{frag} variable
 - Expect that x^{frag} underestimates x_{Au}
 - But if $\langle z \rangle$ constant then x^{frag} will be roughly proportional to $\langle x_{Au} \rangle$

x_{Au} frag Dependence of J_{dAu}

- Results show systematic dependence of J_{dAu} over large x_{Au} range.
 - No suppression for peripheral d+Au
 - Suppression for central d+Au increases strongly with x_{Au}^{frag}
- Interpretation? Indicates very strong shadowing effect. CGC?

Note: points for mid-fwd JdA are offset for visual clarity

Large Shadowing effect

Summary

- The observed suppression of hadron yields at forward rapidity in d+Au collisions at RHIC has confirmed interesting cold nuclear matter effects at small x.
- Di-Hadron correlation measurements allow to further investigate the suppression with better constraints on the kinematics (fix range of relevant x values).
- Di-Hadron correlations at forward rapidity probe very low x values and indicate very large suppression.
 - New input to nPDFs? Perhaps confirming Color Glass Condensate picture of Gluon Saturation?
- In order to understand the results in Pb+Pb collisions at the LHC, it will be essential to understand the cold nuclear matter effects which may be large.
 - At fixed p_T mid-rapidity at the LHC probes the same x-region as forward at RHIC where we see strong cold nuclear matter effects.

EXTRAS

π⁰ (trigger,central)/π⁰ (associate,forward) ENIX

Correlation Widths, d+Au and p+p

Trigger π^0 : $|\eta| < 0.35$, $2.0 < p_{\tau} < 3.0$ GeV Trigger π^0 : $|\eta| < 0.35$, $3.0 < p_{\tau} < 5.0$ GeV

•Widths are consistent between p+p and d+Au (all centralities) within large statistical and systematic errors

•No broadening seen (within errors)